# VCU Discrete Mathematics Seminar 

## Subgraph Complementation and Minimum Rank

Calum Buchanan (University of Vermont)

Wednesday, Oct. 12<br>1:00-1:50 EST<br>Watch party in 4145 Harris Hall

\& Zoom @ https://vcu.zoom.us/j/92975799914
password=graphs2357


It is possible to obtain any $n$-vertex simple graph $G$ from any other n-vertex graph H by performing a sequence of subgraph complementations, meaning that we can iteratively replace induced subgraphs by their complements until we obtain $G$ from $H$. We ask for the minimum number of subgraph complementations required to obtain $G$ from $H$. When $H$ is the graph with no edges, we denote this parameter by $c_{2}(G)$. Finding $c_{2}(G)$ relates closely to the minimum rank problem.

We show that $c_{2}(G)=\operatorname{mr}\left(G, \mathbb{F}_{2}\right)$ when $\operatorname{mr}\left(G, \mathbb{F}_{2}\right)$ is odd or when $G$ is a forest; otherwise, $\operatorname{mr}\left(\mathrm{G}, \mathbb{F}_{2}\right) \leqslant \mathrm{c}_{2}(\mathrm{G}) \leqslant \operatorname{mr}\left(\mathrm{G}, \mathbb{F}_{2}\right)+1$. We then provide two conditions which are equivalent to having $\mathrm{c}_{2}(\mathrm{G})=\operatorname{mr}\left(\mathrm{G}, \mathbb{F}_{2}\right)+1$. In this case, we can still interpret $\operatorname{mr}\left(\mathrm{G}, \mathbb{F}_{2}\right)$ combinatorially using a variation of subgraph complementation. Finally, the class of graphs $G$ with $c_{2}(G) \leqslant k$ is hereditary and finitely defined for any natural number $k$. We exhibit the sets of minimal forbidden induced subgraphs for small values of $k$.

This is joint work with Christopher Purcell and Puck Rombach.

