VCU Discrete Mathematics Seminar

On cyclically 4-connected cubic graphs

Prof Sandra Kingan (Brooklyn College and the Graduate Center, CUNY)

Wednesday, Feb. 21
1:00-1:50 EST
On Zoom, Watch Party in 4145 Harris Hall, @ https://vcu.zoom.us/j/92975799914 password=graphs2357

A 3-connected cubic graph is cyclically 4-connected if it has at least 8 vertices and when removal of a set of three edges results in a disconnected graph, only one component has cycles. By introducing the notion of cycle spread to quantify the distance between pairs of edges, we get a new characterization of cyclically 4-connected graphs. Let Q_{n} and V_{n} denote the ladder and Mobius ladder on $n \geqslant 8$ vertices, respectively.

We prove that a 3-connected cubic graph G is cyclically 4 -connected if and only if G is either the Petersen graph, Q_{n} or V_{n} for $n \geqslant 8$, or G is obtained from Q_{8} or Q_{10} by bridging pairs of edges with cycle spread at least $(1,2)$.

This is joint work with Robert Kingan.

