VCU Discrete Mathematics Seminar

Determinants of Graphs

Prof Craig Larson (VCU)

Wednesday, Oct. 16 1:00-1:50 EDT

In person! in 4145 Harris Hall, and Zoom @ https://vcu.zoom.us/j/92975799914 password=graphs2357

Figure 1: The vertices $I_c = \{x_1, x_2\}$ of G form a maximum cardinality critical independent set. The sets $X = I_c \cup N(I_c) = \{x_1, x_2, y_1, y_2\}$ (orange) and $\overline{X} = V \setminus X$ (green) induce a decomposition of the graph into a KE subgraph G[X] and a 2-bicritical subgraph G[\overline{X}]. Here $\det(G[X]) = 0$, $\det(G[\overline{X}]) = 2$, and $\det(G) = 0$.

Graphs have determinants. Their theory includes Sachs' subgraphs and the Sachs' determinant formula. We apply this to get a new product formula:

Let G be a graph with maximum critical independent set I_c . If $X = I_c \cup N(I_c)$, and $\overline{X} = V(G) - X$, then

$$\det(\mathbf{G}) = \det(\mathbf{G}[\mathbf{X}]) \cdot \det(\mathbf{G}[\bar{\mathbf{X}}]).$$

For the DM seminar schedule, see: https://go.vcu.edu/discrete